Reuse / Revitalization
What is Reuse / Revitalization?

Restoring contaminated and potentially contaminated sites to productive use.
Reuse Plans, Goals, and Outcomes

- Reuse plans and goals directly affect site outcomes
- Conceptual site model (CSM) drives investigation and remedial approaches
- Technical approaches and site decision requirements together drive tool selection
- Effective investigation and remediation provide basis for successful outcomes
Site Reuse Informs Remedial Strategy

Site Reuse Plan

Site Remedial & Staging Plan
Key Reuse / Revitalization Considerations

• Are key stakeholders in alignment on goals?
• Does the community support the reuse plan?
• Does the type of cleanup support the anticipated reuse of the site?
• Will cleanup efforts be performed to meet unique reuse demand, cost constraints, and schedule?
• Will the selected remedies be designed and implemented to remain protective over time?
Incorporating Ecological Revitalization into Cleanup Planning and Design

• Amendments
• Regulatory Requirements
• Attractive Nuisance
• Equipment and Utility Location
• Hydrology and Surface Water Management
• Surface Vegetation
Incorporating Urban Reuse into Cleanup Planning and Design

• Protectiveness of health and environment
• Sustainable community benefit
• Promotes economic, housing, or open space goals
• Preservation of cultural identity and resources
• Removes safety concern or “eye sore”

City of Moorehead, Minnesota
Incorporating Renewable Energy into Contaminated Land Reuse

• Satisfies EPA’s RE-Powering America’s Land initiative
• Contaminated sites beneficial for energy siting because they:
 – Generally have existing transmission capacity, infrastructure, and zoning
 – Take stress off undeveloped lands for construction of new energy facilities, preserving the land carbon sink
 – Provide economically viable reuse for sites with significant cleanup costs or low real estate development demand
 – Provide job opportunities in urban and rural communities

Solar photovoltaic (PV) facility at a former landfill in Fort Carson, CO. The 12-acre site generates 3,200 MWh/year.
Who Can BTSC Help?

Direct Technical Assistance
- State and local governments
- Tribes
- Brownfields Grantees
- EPA Regional Coordinators
- EPA Remedial Project Managers
- EPA On-Scene Coordinators
- Other EPA Regional staff

Information Support
- Real estate professionals
- Developers and financial institutions
- Other private redevelopment interests
- Consultants, engineers and remediation specialists
- Potentially Responsible Parties (PRPs)
- Affected Communities
- General public
Direct Technical Assistance Services

- Project Strategy Consultation
 - Including use of the Triad Approach, Exit Strategies
- Facilitation of Systematic Project Planning
- Review or development of:
 - Conceptual Site Models (CSMs)
 - Dynamic Work Strategies
- Recommendation of innovative and real-time investigation technologies
- Evaluation of remedial technologies
- Review of remedial designs
 - Including Green Remediation and Ecological Revitalization
- Training – Live / Webcast / Archived
“Self-Help” Information Assistance

- Guidance Documents
- Special Issues Primers
- Technical Bulletins
- Fact Sheets
- Case Studies
- Technology Descriptions
- Internet Resources
Reuse / Revitalization Summary

• Reuse / Revitalization key aspect of Brownfields
• Comprehensive planning leads to project success
• Effectively integrated solutions ensure sustainability

Contact:
Michele Mahoney
Office of Superfund Remediation and Technology Innovation
mahoney.michele@epa.gov